Lecture 9

Registers and Counters

Outline

Registers
 Shift Registers
 Ripple Counters
 Synchronous Counters
 Random-Access Memory

Registers and Counters

Register:

- A set of flip-flops, possibly with added combinational gates, that perform data-processing tasks
- Store and manipulate information in a digital system

Counter:

- A register that goes through a predetermined sequence of states
- □ A special type of register
- Employed in circuits to sequence and control operations

The Simplest Register

- Consist of only flip-flops
- Triggered by common clock input
- □ The Clear input goes to the R (reset) input of all flip-flops \Box Clear = 0 " all flip-flops are reset asynchronously
- □ The Clear input is useful for cleaning the registers to all 0's I_3 prior to its clocked operation Must maintain at logic 1 during normal operations

Qn

Q1

Q2

 Q_3

The Simplest Shift Register

Shift register: a register capable of shifting its binary information in one or both directions
 The simplest form: consist of only a chain of flipflops in cascade

Binary Ripple Counter

(b) With D flip-flops

Binary Count Sequence

the output transition triggers the next flip-flop

BCD Ripple Counter The count will return to 0 after 9 Q1: always complemented Q2: inverted when Q8 = 0 and Q1 = $1 \rightarrow 0$ Q4: inverted when Q2 = $1 \rightarrow 0$ Q8: when Q1 = $1 \rightarrow 0$ if (Q2 = Q4 = 1) Q8 is inverted else Q8 = 0

Fig. 6-9 State Diagram of a Decimal BCD-Counter

Ripple v.s. Synchronous

Ripple counters:

- Flip-flops are triggered by the outputs of another flipflops
- Triggering source may not the same for each flip-flop
 The flip-flops are changed serially
- Synchronous counters:
 - Flip-flops are triggered by common clock pulses
 Triggering sources are the same for all flip-flops
 All operations are performed simultaneously

Design a BCD Counter

Go through normal sequential circuit design procedure

Present State					lext	Stat	e	Output	Flip-Flop Inputs			
Q_8	Q_4	Q_2	Q_1	Q_8	Q_4	Q_2	Q_1	у	TQ_8	TQ ₄	TQ ₂	TQ ₁
0	0	0	0	0	0	0	1	0	0	0	0	1
0	0	0	1	0	0	1	0	0	0	0	1	1
0	0	1	0	0	0	1	1	0	0	0	0	1
0	0	1	1	0	1	0	0	0	0	1	1	1
0	1	0	0	0	1	0	1	0	0	0	0	1
0	1	0	1	0	1	1	0	0	0	0	1	1
0	1	1	0	0	1	1	1	0	0	0	0	1
0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	0	0	1	0	0	0	0	1
1	0	0	1	0	0	0	0	1	1	0	0	1
$TQ_{1} = 1 TQ_{2} = Q_{8}'Q_{1} TQ_{4} = Q_{2}Q_{1} TQ_{8} = Q_{8}Q_{1} + Q_{4}Q_{2}Q_{1} y = Q_{8}Q_{1}$												

Ring Counter

Ring counter: a circular shift register with only one flip-flop being set at any time

Mass Memory Elements

Memory is a collection of binary cells together with associated circuits needed to transfer information to or from any desired location

Two primary categories of memory:
 Random access memory (RAM)
 Read only memory (ROM)

Random Access Memory

A word is the basic unit that moves in and out of memory The length of a word is often multiples of a byte (=8 bits) Memory units are specified by its number of words and the number of bits in each word □ Ex: 1024(words) x 16(bits) Each word is assigned a particular address, starting from 0 up to $2^k - 1$ (k = number of address lines)

Memory a	ddress	
Binary	Decimal	Memory content
000000000	0	1011010101011101
000000001	1	1010101110001001
000000010	2	0000110101000110
111111101	1021	1001110100010100
111111110	1022	0000110100011110
111111111	1023	1101111000100101

FIGURE 7.3:Contents of a 1024 * 16 memory

Write and Read Operations

Write to RAM

- Apply the binary address of the desired word to the address lines
- Apply the data bits that must be stored in memory to the data input lines
- □ Activate the **write control**
- Read from RAM
 - Apply the binary address of the desired word to the address lines
 - Activate the read control

Timing Waveforms

CPU clock = 50 MHz
cycle time = 20 ns
Memory access time = 50 ns
The time required to complete a read or write operation
The control signals must stay active for at least 50 ns
3 CPU cycles are required

Types of Memories

- Access mode:
 - Random access: any locations can be accessed in any order
 - Sequential access: accessed only when the requested word has been reached (ex: hard disk)
- Operating mode:
 - □ Static RAM (SRAM)
 - Dynamic RAM (DRAM)
- Volatile mode:
 - Volatile memory: lose stored information when power is turned off (ex: RAM)
 - Non-volatile memory: retain its storage after removal of power (ex: flash, ROM, hard-disk, .)

SRAM vs. DRAM

- □ Static RAM:
 - Use internal latch to store the binary information
 - Stored information remains valid as long as power is on
 - Shorter read and write cycles
 - Larger cell area and power consumption

Fig. 6-5 Static RAM Cell

Dynamic RAM:

- Use a capacitor to store the binary information
- Need periodically refreshing to hold the stored info.
- Longer read and write cycles
- Smaller cell area and power consumption

reading

- M. Morris Mano, Michael D. Ciletti "Digital Design With an Introduction to the Verilog HDL" FIFTH EDITION
 - Sections: 6.1 ,6.2(pages 255-259,266-275,280-281)
 - Sections: 7.1 ,7.2(pages 299-302)